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A HYDRODYNAMIC GENERALIZATION OF WARD'S IDENTITY-:' 

E.V. TEODOROVICH 

An important part of the construction of solutions of equations 
describing non-linear dynamic systems is the investigation of their 
symmetry properties. An example is provided by quantum electrodynamics, 
in which the gauge invariance condition implies a certain relationship 
between the mass operator and the vortex; this relationship is known as 
the generalized Ward identity (GWI) /I/. The GWI is essential for 
proving the renormalizability of quantum electrodynamics, i.e., the 
reduction of the divergences of the radiation corrections to the vertex 
function and the renormalization constant of the electron wave function. 
Similarly, in statistical hydrodynamics (turbulence theory) the 
Galilean invariance condition implies the existence of relationships 
between the different statistical moments and the response functions to 
external forces. Relationships of this kind were first obtained by 
Pitayevskii /2/ in a study of the superfluidity of liquid helium, but 
they have not been written out for developed turbulence. An attempt /3/ 
made to postulate a certain GWI-type relationship in order to establish 
a closed system of equations in turbulence theory has since been proved 
wrong /3, 4f. 

In this paper, in connection with a hydrodynamic system described 
by the Navier-Stokes equations in the presence of a random external 
force, the Galilean invariance condition is seen to imply an exact 
relationship between the mass operator and the vertex (hydrodynamic 
GWI); this relationship is shown to be valid up to third-order 
perturbation theory. 

1. The initial system of equations. The characteristics of the hydrodynamic field 
- the pressure p and velocity projections vi (i = 1,2,3) - will be considered here as com- 
ponents of a four-component vector v,or = {$O,$i} = {p,V,} (CL = 0,1,2,3). The totality of space- 
time coordinates will be denoted by digits in accordance with the definition (rl,t,} = 1. Using 
the formalism proposed in /5/, we write the Navier-Stokes equations as follows /6/: 

- L, (1, hpl) + x, (I) + qa* (I) = 0 (1.1) 

~~(1, [+I) = ~:;(12)~~ (2) f1/8h~aeY(~ I 23)q8 (2)ti (3) (1.2) 

(formula (1.2) involves the formally introduced parameter h of the series expansion, which 
will ultimately be equated to unity). The linear part of the Navier-Stokes operator L,+o) 
and the non-vanishing components of the tensor Vasv are determined by the relations 

LgJ (12) = 
0 ay ’ 
a{" (a;" - VA(')) bij 

S(l-2) 

ViiK (II 23) = -_[6&@) + 6t,a,(2)J 6 (1 - 2) 6 (1 - 3) 

xz = {X0, x*1 are the densities of the statistically defined sources of mass (&I) and 
force (X,); qa* = {q,,*,q,*} are thedensities of the corresponding regular (deterministic) 
sources. We shall assume that X, is a random process of the Gaussian "white noise" type 
(Wyld's model /3/j, for which the only non-zero cumulative mean has the form 

<Xi (1) X, (2)> = Bij (12) = hi16 (tl - ts) B (rr - 12) (1.4) 

The characteristic functional of the system can be written as a double functional (con- 
tinuous) integral with respect to the fields (v,$p* /b-8/: 
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(1.5) 

The invariance of the functional integral under a translation of the function argument 
9*-+9* -t- 'p* implies a functional differential equation for the characteristic functional: 

The representation (1.5) is a convenient tool for constructing perturbation theory and 
the corresponding diagram technique. According to perturbation theory for statistical hydro- 
dynamics /9/, the elements of the diagram technique are Green's functions G(O), the velocity 
pair correlator C(o) and the vertex F, whose Fourier-transform representations are as 
follows: 

G$) (p, of = I',, (p} (-iw + VP")-' 

Cij("(P* O) z PiI (P)B (P) (aa + v*P4)-' 

Vijk (P) = i bjSik + Pksij) 

(1.7) 

where P,j (P) = 611 - PiPJP* is the transversal projector. The appropriate graphic symbols 
are shown in Fig-l. 

Fig.1 

2. Ike ~1 in Z-r-order perturbation theory. Consider a vertex corresponding 
to absorption of a quantum with zero frequency and wave number, which is the asymptotic form 
of an Eulerian vertex. Following /ID/, we shall represent such kinematic vertices in 
diagrams by inserting a tailless triangular arrow, as shown in Fig.2. 

Fig.2 

According to the rules of diagram technique, the expression corresponding to the diagram 
of Fig.2 is 

hG$?(PV ~)Vj~ik'(P)G$k(p * O) c-- 

ih pjj‘ (PI @iEij’*’ + P&f*) P?&j (P) 
= api 

p*x (Pj dGj$ (p, 0) 

(- $0 + v&y (- 10 + vppf” = hi% & 

Proceedingas in /ll/, we can rewrite this expression as a GWT: 

Formula (2.1)‘ which pertains to lower-order perturbation theoryy, cannot simply be 
extended to diagrams of arbitrary order by a procedure similar to that used in quantum 
electrodynamics /U.!. The root of the difference is that in quantum electrodynamics the 
operation corresponding to photon insertion is multiplication by a constant Dirac matrix, 
whereas in hydrodynamics insertion of a kinematic vertex in an internal line is equivalent to 
multiplication by the momentum (wave number) of an internal line, not an external. one /lo/. 
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Nevertheless, a GwI generalizing (2.1) is valid in higher orders of perturbation theory, as 
will be illustrated below fox third-order diagrams. 

The radiation corrections to the vertex are described by a sum of three diagrams, as 
shown in Fig.3. Omitting the zero index of Green's functions and the correlators, we obain 

from Fig.3 and (1.7) 

(2.2) 

ia* - s bjk (P* 9)’ (‘if (c$ p+ v?p4)[-_((o- s)+v(p-qp)*] x 

Yi 
-I- 

Pj - Pi qi -- 
- i6a Jr vpl -i(w-Q)+V(p-qY1 iR+Wf 

bjk (Pt ‘4) = 

(to establish this formula 

Pi.PIj (P) = 0, pjl (d Plk (P) = 
proportional to Pi in the 
Q,and there remains 

Vj,n (p) Pnn, (9) P,,t,(P - 9) ‘,t’,t’k (P - q), P =I {Pl @)' 'J = '9' '1 

we have used the following properties of the projection operators: 

Pjk(p)). A direct calculation shows that the sum of the terms 
curly brackets in (2.2) vanishes on integrating with respect to 

(2.3) 

where the eigenenergy operator in second-order perturbation theory is defined by 

%‘(P) = wjm (P) I+$$- &,(q)G,m,(p - q) Vtn,n,k (p - q) (2.4) 

Fig.3 

3. Gene~l proof of the GUI. We shall now show, without appealing to perturbation 
theory, how the GWI follows from the condition that the hydrodynamic system possesses Galilean 
invariance. To that end we transform formula (1.5) by applying the change of functional 
argument 9i-t $i + F.Tf, which does not affect the value of the functional integral, and the 
coordinate transformation 5,"~~ -XV& In view of the Galilean invariance of the Navier- 
Stokes operator (1.11, 

(3.1) 

the functional integral (1.5) takes the form 

W Iq, q*J = $ d t*J d IqPJ exp i {q~* (rl - hVt,+ tl) x 

6s hh ~*JKw* (rlr h) -t Vi 5 dIrti (1) + ala (1) k (1) + ~a* (1) $a* (1)) 
(3.2) 

Since the functional integral (1.5) is independent of the parameter Vi we find, using 
(1.6), that 

(3.3) 

To obtain an equation for strongly connected (one-particle-irreducible) diagrams, we 
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transform to new functional variables 

after applying the Legendre functional transformation by introducing a new characteristic 
functional /9/ 

Y [rp, cp*l = In WI?, rl*l - ina CPU(l) - &* (l)cp,* (1) 

In the new variables formula (3.3) becomes 

(3.4) 

This formula is a generating equation for GWI's due to Galilean invariance for strongly 
connected diagrams. In particular, repeated functional differentiation of (3.4) with respect 

using the fact that the extremality condition GY/iScp = -q = 0 implies 

i dl [ht,G1,-' (13)8i"'6,,S(1 - 2) - rji, (2 1 13)l = 0 (3.5) 

where Gil-r (12) is the inverse complete Green's function, and rlik t2 I 13) is a one-particle- 
irreducible complete vertex with two incoming lines (1, i) and (3, k) and one outgoing line 
(2,j)/g/.Taking Fourier transformations of (3.5), we obtain 

$i8Gj,-'(p)lao + rjir (P 10, P) = 0 (3.6) 

This exact equation is a rigorous corollary of the Galilean invariance of the hydro- 
dynamic system and its derivation is not based on perturbation theory. 

Separating out the first-order term from the vertex 

rjik (P I Q, p - Q) = hvjih (P) -i- hjir (P I QV P - 9) 

and using the relation 

Gt1-l (P) = [Gij(") (p)I-' - Xi, (,D) 

which follows from the Dyson equation, we can rewrite Eq.(3.6) as 

--hpidZj, (p)laO + Ajik (p I O? P) = O (3.7) 

which is identical with (2.3) in third-order perturbation theory. 
Applying variational differentiation of (3.4) with respect to cpj* (2), qPk*(3), we obtain 

yet another GWI, relating the pair correlator c to the vertex describing the conversion of a 
quantum with zero wave number and frequency into two quanta (such processes are possible only 
in higher-order perturbation theory - from third order and up). The corresponding relation 
in Fourier space is 

2hPi & [G;;! (P) Gi$ (- P) %T (P)i - rjkt (P, - P 10) = 0 (3.8) 

Relations (3.6) and (3.8) prove useful in investigating questions of compensation for 
divergences of diagrams in-hydrodynamic perturbation theory and elimination of ultraviolet 
divergences by renormalization. 

If one carries out multiplicative renormalizations of the pair correlator, Green's func- 
tion and vertex by the relations /12/ 

C + a,C, G -+ a,G, r + a,r (3.9) 

it turns out that such renormalizations are compatible with the Dyson equation provided that 

a, aa2a92= 1. The GWI (3.6) derived from Galilean invariance implies the additional con- 
dition ag-l = a,, which is equivalent to a, = 1. Thus, invariance under the multiplicative 
transformations (3.9) is due to the presence of an arbitrary element in the choice of the 
auxiliary field amplitude cp*. By introducing a suitable counterterm (not necessarily infinite) 
and applying a renormalization-group method, which uses the invariance of the result under 
variations of the normalization point of the field amplitude +*, one can determine additional 
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information about the statistical characteristics of the turbulence field, proceeding as in 
the investigation of turbulent viscosity and diffusion (see, e.g., /13, 14/l. 

REFERENCES 

1. BOGOLYUBOV N.N. and SHIRKOV D.V., Introduction to Quantum Field Theory, Nauka, Moscow, 
1984. 

2. PITAYEVSKII L.P., On the question of the superfluidity of liquid Ii@. Zh. Eksp. Teor. 
Fiz., 37, 6, 1959. 

3. WYLD H.D., Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys., 
14, 2, 1961. 

4. HONIN A.S. and YAGLOM A.M., Statistical Hydrodynamics, Pt.2, Nauka, Moscow, 1967. 
5. MARTIN P-C., SIGGIA E.D. and ROSE H.A., Statistical dynamics of classical systems. Phys. 

Rev. A, 8, 1, 1973. 
6. TEODOROVICH E.V., Computation of turbulent viscosity based on the renorm-group method. 

Dokl. Akad. Nauk SSSR, 299, 4, 1988. 
7. DE DOMINICIS C. and PELITI L., Field-theory renormalization and critical dynamics above 

7‘,: Helium, antiferromagnetic and liquid-gas systems. Phys. Rev. B, 18, 1, 1978. 
8. ADZHEMYAN L.TS., VASIL'YEV A.N. and PIS'MAK YU.M., The renonn-group approach in turbulence 

theory: dimensions of component operators. Teoret. Mat. Fiz., 57, 2, 1983. 

9. TEODOROVICH E.V., Methods of field theory in statistical hydrodynamics. In: Methods of 
Hydrophysical Research, Waves and Vortices, Gor'kii, Izd. Inst. Prikl. Fiz. Akad. Nauk 
SSSR, 1987. 

10. BELINICHER V.I. and L'VOV V.S., Gauge-invariant theory of developed turbulence. Zh. Eksp. 
Teor. Fiz., 93, 2, 1987. 

11. SCHWEBER S.S., BETHE H. and DE HOFFMAN F., Mesons and Fields, Part 1, Izd. Inostr. Lit., 
Moscow, 1957. 

12. GLEDZER E.B. and MONIN A.S., The method of diagrams in perturbation theory. Uspekhi Mat. 
Nauk, 29, 3, 1974. 

13. TEODOROVICH E.V., On the computation of turbulent viscosity. Izv. Akad. Nauk SSSR, Mekh. 
Zhidk. Gas., 4, 1987. 

14. TEODOROVICH E.V., Turbulent transport phenomena and the renormalization group method. 
Prikl. Mat. Mekh., 52, 2, 1988. 

Translated by D.L. 


